Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence

Marcia L. Gumpertz, Jonathan M. Graham and Jean B. Ristaino
Journal of Agricultural, Biological, and Environmental Statistics
Vol. 2, No. 2 (Jun., 1997), pp. 131-156
Stable URL: http://www.jstor.org/stable/1400400
Page Count: 26
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Autologistic Model of Spatial Pattern of Phytophthora Epidemic in Bell Pepper: Effects of Soil Variables on Disease Presence
Preview not available

Abstract

The autologistic model is a flexible model for predicting presence or absence of disease in an agricultural field, based on soil variables, while taking spatial correlation into account. In the autologistic model, the log odds of disease in a particular quadrat are modeled as a linear combination of disease presence or absence in neighboring quadrats and the soil variables. Neighboring quadrats can be defined as adjacent quadrats within a row, quadrats in adjacent rows, quadrats two rows away, and so forth. The regression coefficients give estimates of the increase in odds of disease if neighbors within a row or in adjacent rows show disease symptoms; thus, we obtain information about the degree of spread in different directions. The coefficients for the soil variables give estimates of the increase in odds of disease as soil water content or pathogen population density increase. In this problem, the soil variables may also be highly correlated over quadrats, and disease incidence in within-row neighbors may be highly correlated with disease incidence in adjacent-row neighbors. This collinearity makes estimation and interpretation of the parameters of the autologistic model more difficult. We discuss fitting the autologistic model and tools for evaluating the aptness of the model.

Page Thumbnails

  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156