Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

A Quasi-Likelihood Approach for Overdispersed Binomial Data When N Is Unobserved

Jennifer A. Elder, W. Hans Carter, Jr., Chris Gennings and R. K. Elswick, Jr.
Journal of Agricultural, Biological, and Environmental Statistics
Vol. 4, No. 2 (Jun., 1999), pp. 102-115
Stable URL: http://www.jstor.org/stable/1400591
Page Count: 14
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Quasi-Likelihood Approach for Overdispersed Binomial Data When N Is Unobserved
Preview not available

Abstract

Several methods for the analysis of binomial data when the denominator, N, is unknown have been developed. Each of these methods requires that the mean of the distribution of N is known. In this article, we develop a quasi-likelihood technique that allows for the estimation of the means of the distributions needed to define the expected value and variance of the observed response and suggest a different form of the variance function. We illustrate the results of the proposed analysis and the results obtained when the mean of the distribution of N is assumed known through the analysis of a surviving jejunal crypt data set. Although the proposed method shows inflated standard errors of the parameter estimates in the cited example, the proposed method performs as well as a previously published method in all simulated conditions. Moreover, in cases where E(N) is misspecified, the proposed method outperforms the previously published method.

Page Thumbnails

  • Thumbnail: Page 
102
    102
  • Thumbnail: Page 
103
    103
  • Thumbnail: Page 
104
    104
  • Thumbnail: Page 
105
    105
  • Thumbnail: Page 
106
    106
  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115