Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Estimator Selection for Closed-Population Capture: Recapture

Thomas R. Stanley and Kenneth P. Burnham
Journal of Agricultural, Biological, and Environmental Statistics
Vol. 3, No. 2 (Jun., 1998), pp. 131-150
Stable URL: http://www.jstor.org/stable/1400647
Page Count: 20
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Estimator Selection for Closed-Population Capture: Recapture
Preview not available

Abstract

For valid statistical inference, it is important to select an appropriate statistical model. In the analysis of capture-recapture data under the closed-population models of Otis et al. (1978), information theoretic and hypothesis testing approaches to model selection are not practical, because some of the models have likelihoods with nonidentifiable parameters. A further problem is that, for some of the Otis et al. models, multiple estimators exist but there is no objective basis for deciding which estimator to use for a particular dataset. In CAPTURE, a computer program for estimating parameters under the closed models of Otis et al., a linear discriminant classifier is used to select an appropriate model. This classifier frequently selects the incorrect generating model in simulation studies, and it provides no guidance on which estimator to use once a model has been selected. In this study, we develop new classifiers for selecting the best estimator (as opposed to the generating model) and evaluate their performance. In addition, we investigate an estimator averaging approach to estimation that is a modification of the model averaging approach described by Buckland et al. (1997). We found that, in general, the overall performance of the new classifiers was unimpressive. In contrast, the estimator averaging approach we investigated performed well.

Page Thumbnails

  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150