Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Statistical Analysis of a Multiplicative Model and Its Application to the Standardization of Vital Rates: A Review

Jan M. Hoem
International Statistical Review / Revue Internationale de Statistique
Vol. 55, No. 2 (Aug., 1987), pp. 119-152
DOI: 10.2307/1403190
Stable URL: http://www.jstor.org/stable/1403190
Page Count: 34
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Statistical Analysis of a Multiplicative Model and Its Application to the Standardization of Vital Rates: A Review
Preview not available

Abstract

This paper reviews the statistical theory of conventional direct and indirect standardization of occurrence/exposure rates. The statistical properties of these methods are investigated under a multiplicative model used before in a great number of situations. A solution is then provided for several problems that keep reappearing in the literature. Many options open even if the multiplicative model fails are also sketched. The theory is illustrated by empirical examples. An appendix considers the tenability of a Poisson approximation much used in the literature. /// Le présent article rend compte de la théorie statistique des méthodes conventionnelles de la population-type et des taux-types pour les taux événement/exposition. Les caractéristiques statistiques de ces méthodes sont étudiées suivant un modèle multiplicatif déjà employé dans un grand nombre de situations. Une solution est ainsi apportée à divers problèmes qui réapparaissent constamment dans la littérature. De nombreuses options possibles même en cas de défaillance du modèle multiplicatif sont également esquissées. La théorie est illustrée par des exemples empiriques. En annexe, on examine la validité d'une approximation de Poisson très utilisée dans la littérature.

Page Thumbnails

  • Thumbnail: Page 
[119]
    [119]
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152