Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Improved Bounds for the Availability and Unavailability in a Fixed Time Interval for Systems of Maintained, Interdependent Components

B. Natvig
Advances in Applied Probability
Vol. 12, No. 1 (Mar., 1980), pp. 200-221
DOI: 10.2307/1426502
Stable URL: http://www.jstor.org/stable/1426502
Page Count: 22
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Improved Bounds for the Availability and Unavailability in a Fixed Time Interval for Systems of Maintained, Interdependent Components
Preview not available

Abstract

In this paper we arrive at a series of bounds for the availability and unavailability in the time interval $I=[t_{A},t_{B}]\subset [0,\infty)$, for a coherent system of maintained, interdependent components. These generalize the minimal cut lower bound for the availability in [0,t] given in Esary and Proschan (1970) and also most bounds for the reliability at time t given in Bodin (1970) and Barlow and Proschan (1975). In the latter special case also some new improved bounds are given. The bounds arrived at are of great interest when trying to predict the performance process of the system. In particular, Lewis et al. (1978) have revealed the great need for adequate tools to treat the dependence between the random variables of interest when considering the safety of nuclear reactors. Satyanarayana and Prabhakar (1978) give a rapid algorithm for computing exact system reliability at time t. This can also be used in cases where some simpler assumptions on the dependence between the components are made. It seems, however, impossible to extend their approach to obtain exact results for the cases treated in the present paper.

Page Thumbnails

  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221