Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Stochastic Theory of a Fluid Model of Producers and Consumers Coupled by a Buffer

Debasis Mitra
Advances in Applied Probability
Vol. 20, No. 3 (Sep., 1988), pp. 646-676
DOI: 10.2307/1427040
Stable URL: http://www.jstor.org/stable/1427040
Page Count: 31
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Stochastic Theory of a Fluid Model of Producers and Consumers Coupled by a Buffer
Preview not available

Abstract

This paper analyzes, derives efficient computational procedures and numerically investigates the following fluid model which is of interest in manufacturing and communications: m producing machines supply a buffer, n consuming machines feed off it. Each machine independently alternates between exponentially distributed random periods in the 'in service' and 'failed' states. Producers/consumers have their own failure/repair rates and working capacities. When the buffer is either full or empty some of the machines in service are not utilized to capacity; otherwise they are fully utilized. Our main result is for the state distribution of the Markovian system in equilibrium which is the solution of a system of differential equations. The spectral expansion for its solution is obtained. Two important decompositions are obtained: the eigenvectors have the Kronecker-product form in lower-dimensional vectors; the characteristic polynomial is factored with each factor an explicitly given polynomial of degree at most 4. All eigenvalues are real. For each of various cases of the model, a system of linear equations is derived from the boundary conditions; their solution complete the spectral expansion. The count in operations of the entire procedure is O(m3n3): independence from buffer size exemplifies an important attraction of fluid models. Computations have revealed several interesting features, such as the benefit of small machines and the inelasticity of production rate to inventory. We also give results on the eigenvalues of a more general fluid model, reversible Markov drift processes.

Page Thumbnails

  • Thumbnail: Page 
646
    646
  • Thumbnail: Page 
647
    647
  • Thumbnail: Page 
648
    648
  • Thumbnail: Page 
649
    649
  • Thumbnail: Page 
650
    650
  • Thumbnail: Page 
651
    651
  • Thumbnail: Page 
652
    652
  • Thumbnail: Page 
653
    653
  • Thumbnail: Page 
654
    654
  • Thumbnail: Page 
655
    655
  • Thumbnail: Page 
656
    656
  • Thumbnail: Page 
657
    657
  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659
  • Thumbnail: Page 
660
    660
  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663
  • Thumbnail: Page 
664
    664
  • Thumbnail: Page 
665
    665
  • Thumbnail: Page 
666
    666
  • Thumbnail: Page 
667
    667
  • Thumbnail: Page 
668
    668
  • Thumbnail: Page 
669
    669
  • Thumbnail: Page 
670
    670
  • Thumbnail: Page 
671
    671
  • Thumbnail: Page 
672
    672
  • Thumbnail: Page 
673
    673
  • Thumbnail: Page 
674
    674
  • Thumbnail: Page 
675
    675
  • Thumbnail: Page 
676
    676