Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Lake Kinneret Dissolved Oxygen Regime Reflects Long Term Changes in Ecosystem Functioning

Ami Nishri, Tamar Zohary, Moshe Gophen and David Wynne
Biogeochemistry
Vol. 42, No. 3 (Sep., 1998), pp. 253-283
Published by: Springer
Stable URL: http://www.jstor.org/stable/1469387
Page Count: 31
  • Download ($43.95)
  • Cite this Item
Lake Kinneret Dissolved Oxygen Regime Reflects Long Term Changes in Ecosystem Functioning
Preview not available

Abstract

Lake Kinneret (Israel) has undergone several prominent chemical and biological changes since 1970. Between 1970 and 1991 significant, long-term gradual increase were recorded in epilimnetic dissolved oxygen (DO) concentrations (about 20%), and in pH levels (0.2 units). Concomitantly there was a significant increase in hypolimnetic H2S concentrations (about 75%) and a long-term gradual drop in zooplankton biomass (50%). Since 1994 these trends were reversed and the levels of the three chemical parameters have returned to those found in the 1970's and that of zooplankton to mid 1980's levels. The present study is an attempt to relate some of these long term changes by means of yearly oxygen budgets, based on fluxes of oxygen producing and consuming processes. This analysis raises the possibility that part of the long-term increase in epilimnetic DO and pH between 1970 to 1990 may be attributed to reduced inputs of organic matter from alochthonous sources and possibly to enhanced burial of organic matter in the bed sediments. However, the major cause for the observed increase in epilimnetic DO and pH is increased sedimentation of organic matter to the hypolimnion during stratification. As indicated by the amount of H2S formed in the hypolimnion during stratification added to the amount of oxygen entrapped in this layer at the onset of thermal stratification, between 1970 to 1991 the sedimentation flux of organic matter increased by approximately 40%. It is estimated that during these two decades hypolimnetic respiration increased from ca. 8% of the annual amount of oxygen evolved due to photosynthesis during the early 1970's to ca. 12.5% during the 1980's. The shift in the layer of oxidative processes is suggested to be the result of a multi-annual decline in zooplankton grazing pressure, which led to increased sedimentation of organic matter. The reversed trends for DO, pH and H2S since 1994 may have partially been due to the increase in zooplankton activity and partially due to changes in phytoplankton community structure.

Page Thumbnails

  • Thumbnail: Page 
[253]
    [253]
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283