Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Patterns and Mechanisms of Soil Acidification in the Conversion of Grasslands to Forests

Esteban G. Jobbágy and Robert B. Jackson
Biogeochemistry
Vol. 64, No. 2 (Jun., 2003), pp. 205-229
Published by: Springer
Stable URL: http://www.jstor.org/stable/1469676
Page Count: 25
  • Download ($43.95)
  • Cite this Item
Patterns and Mechanisms of Soil Acidification in the Conversion of Grasslands to Forests
Preview not available

Abstract

Grassland to forest conversions currently affect some of the world's most productive regions and have the potential to modify many soil properties. We used afforestation of native temperate humid grassland in the Pampas with eucalypts as an experimental system to 1) isolate forest and grassland imprints on soil acidity and base cation cycling and 2) evaluate the mechanisms of soil acidification. We characterized soil changes with afforestation using ten paired stands of native grasslands and Eucalyptus plantations (10-100 years of age). Compared to grasslands, afforested stands had lower soil pH (4.6 vs.5.6, p < 0.0001) and ∼40% lower exchangeable Ca (p < 0.001) in the top 20 cm of the soil. At three afforested stands where we further characterized soil changes to one meter depth, soil became increasingly acidic from 5 to 35 cm depth but more alkaline below ∼60 cm compared to adjacent grasslands, with few differences observed between 35 and 60 cm. These changes corresponded with gains of exchangeable acidity and Na in intermediate and deeper soil layers. Inferred ecosystem cation balances (biomass + forest floor + first meter of mineral soil) revealed substantial vertical redistributions of Ca and Mn and a tripling of Na pools within the mineral soil after afforestation. Soil exchangeable acidity increased 0.5-1.2 kmolc.Ha-1.yr-1 across afforested stands, although no aboveground acidic inputs were detected in wet + dry deposition, throughfall and forest floor leachates. Our results suggest that cation cycling and redistribution by trees, rather than cation leaching by organic acids or enhanced carbonic acid production in the soil, is the dominant mechanism of acidification in this system. The magnitude of soil changes that we observed within half a century of tree establishment in the Pampas emphasizes the rapid influence of vegetation on soil formation and suggests that massive afforestation of grasslands for carbon sequestration could have important consequences for soil fertility and base cation cycles.

Page Thumbnails

  • Thumbnail: Page 
[205]
    [205]
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227
  • Thumbnail: Page 
228
    228
  • Thumbnail: Page 
229
    229