Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Polyploidy and Self-Compatibility: Is There an Association?

Barbara K. Mable
The New Phytologist
Vol. 162, No. 3 (Jun., 2004), pp. 803-811
Published by: Wiley on behalf of the New Phytologist Trust
Stable URL: http://www.jstor.org/stable/1514575
Page Count: 9
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Polyploidy and Self-Compatibility: Is There an Association?
Preview not available

Abstract

• Researchers have hypothesized that self-compatibility (SC) should be more common in polyploid taxa than their diploid counterparts because of selection for reproductive assurance and/or the expected decline in inbreeding depression associated with having 'extra' gene copies. Support for this view has come from an observed breakdown of self-incompatibility (SI) in some species with a gametophytic system (GSI). The purpose of this research was to assess the strength of this relationship across a wider array of SI systems. • A large database, of diploid chromosome numbers, ploidy levels, and types of SI system, was assembled for angiosperm species and used to test for an association between ploidy and SC. • No strong association was found between SC and polyploidy at the level of species or families, and there was no evidence that those having a functional SI system also had fewer polyploid taxa or that most polyploids experience a breakdown in SI. • These results challenge the assumption that self-fertilization is strongly associated with polyploidy and suggest directions for further research on the evolution of polyploidy in relation to SI.

Page Thumbnails

  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811