Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Altitudinal Differences in Organic Matter Mass Loss and Fungal Biomass in a Subalpine Coniferous Forest, Mt. Fuji, Japan

Masaki Uchida, Takayuki Nakatsubo, Yoshiko Kasai, Kaneyuki Nakane and Takao Horikoshi
Arctic, Antarctic, and Alpine Research
Vol. 32, No. 3 (Aug., 2000), pp. 262-269
DOI: 10.2307/1552524
Stable URL: http://www.jstor.org/stable/1552524
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Altitudinal Differences in Organic Matter Mass Loss and Fungal Biomass in a Subalpine Coniferous Forest, Mt. Fuji, Japan
Preview not available

Abstract

In order to study the long-term effect of climatic conditions on organic matter decomposition, the difference in the mass loss rate of organic substrates was examined along the altitudinal temperature gradient (1500-2400 m) of Mt. Fuji, Japan. Two standard substrates, cellulose filter paper and wood chips of beech (Fagus crenata), were placed in the L and FH layers at each altitude. The mass loss rates tended to be smaller with increasing altitude and were significantly correlated with the annual mean air temperature in a log-linear fashion. The temperature dependence of the mass loss rates was much larger than that of microbial respiration. The initial increase in ergosterol content (an indicator of fungal biomass) of organic substrates was more rapid at low altitudes than at higher altitudes. The effects of fungal biomass and freezing temperatures on the temperature dependence of decomposition were examined using a simple simulation model. The results suggest that the effects of temperature increase on decomposition could be much larger than those estimated from the temperature-microbial respiration curves.

Page Thumbnails

  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269