Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, U.S.A.

T. E. Osterkamp, L. Viereck, Y. Shur, M. T. Jorgenson, C. Racine, A. Doyle and R. D. Boone
Arctic, Antarctic, and Alpine Research
Vol. 32, No. 3 (Aug., 2000), pp. 303-315
DOI: 10.2307/1552529
Stable URL: http://www.jstor.org/stable/1552529
Page Count: 13
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, U.S.A.
Preview not available

Abstract

Thermokarst is developing in the boreal forests of Alaska where ice-rich discontinuous permafrost is thawing. Thawing destroys the physical foundation (ice-rich soil) on which boreal forest ecosystems rest causing dramatic changes in the ecosystem. Impacts on the forest depend primarily on the type and amount of ice present in the permafrost and on drainage conditions. At sites generally underlain by ice-rich permafrost, forest ecosystems can be completely destroyed. In the Mentasta Pass area, wet sedge meadows, bogs, thermokarst ponds, and lakes are replacing forests. An upland thermokarst site on the University of Alaska Campus consists of polygonal patterns of troughs and pits caused by thawing ice-wedge polygons. Trees are destroyed in corresponding patterns. In the Tanana Flats, ice-rich permafrost supporting birch forests is thawing rapidly and the forests are being converted to minerotrophic floating mat fens. At this site, an estimated 83% of 2.6* 105 ha was underlain by permafrost a century or more ago. About 42% of this permafrost has been influenced by thermokarst development within the last 1 to 2 centuries. Thaw subsidence at the above sites is typically 1 to 2 m with some values up to 6 m. Much of the discontinuous permafrost in Alaska is extremely warm, usually within 1 or 2°C of thawing, and highly susceptible to thermal degradation. Additional warming will result in the formation of new thermokarst.

Page Thumbnails

  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315