Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Influence of Catchment Characteristics on the Water Chemistry of Mountain Lakes

Christian Kamenik, Roland Schmidt, Georg Kum and Roland Psenner
Arctic, Antarctic, and Alpine Research
Vol. 33, No. 4, Symposium: High-Mountain Lakes and Streams: Indicators of a Changing World (Nov., 2001), pp. 404-409
DOI: 10.2307/1552549
Stable URL: http://www.jstor.org/stable/1552549
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Influence of Catchment Characteristics on the Water Chemistry of Mountain Lakes
Preview not available

Abstract

Forty-four lakes in the Austrian Alps were studied to examine the influence of catchment characteristics on water chemistry. The lakes are located along an altitudinal gradient (1502-2309 m a.s.l.) in a small study area (35.5 km * 15.5 km) without glaciers. Longitude and latitude accounted for 21.4% of the variation in water chemistry. Bedrock mineralogy explained 14.5% of the variation. Vegetation accounted for 13.2% and slope for 5.5% of the variation in water chemistry. No correlations were found between exposure and water chemistry. Water chemistry appeared to be mainly determined by (1) chemical weathering of carbonate minerals and (2) in-lake productivity. Carbonate minerals were assumed to be present in all watersheds. Trees and shrubs enhanced chemical weathering. Concentrations of chemical parameters indicating physical weathering were high in lakes with large, steep catchments. Steep watersheds were correlated with enhanced nitrogen concentrations in the lakes. In-lake productivity obscured relationships between chemical parameters and catchment characteristics. Nonetheless, catchment characteristics explained 45% of the variation in water chemistry, stressing their importance for water chemistry in mountain lakes.

Page Thumbnails

  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409