Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions

Chunrong Ai and Xiaohong Chen
Econometrica
Vol. 71, No. 6 (Nov., 2003), pp. 1795-1843
Published by: The Econometric Society
Stable URL: http://www.jstor.org/stable/1555539
Page Count: 49
  • Read Online (Free)
  • Download ($10.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions
Preview not available

Abstract

We propose an estimation method for models of conditional moment restrictions, which contain finite dimensional unknown parameters (θ) and infinite dimensional unknown functions (h). Our proposal is to approximate h with a sieve and to estimate θ and the sieve parameters jointly by applying the method of minimum distance. We show that: (i) the sieve estimator of h is consistent with a rate faster than n-1/4 under certain metric; (ii) the estimator of θ is √n consistent and asymptotically normally distributed; (iii) the estimator for the asymptotic covariance of the θ estimator is consistent and easy to compute; and (iv) the optimally weighted minimum distance estimator of θ attains the semiparametric efficiency bound. We illustrate our results with two examples: a partially linear regression with an endogenous nonparametric part, and a partially additive IV regression with a link function.

Page Thumbnails

  • Thumbnail: Page 
1795
    1795
  • Thumbnail: Page 
1796
    1796
  • Thumbnail: Page 
1797
    1797
  • Thumbnail: Page 
1798
    1798
  • Thumbnail: Page 
1799
    1799
  • Thumbnail: Page 
1800
    1800
  • Thumbnail: Page 
1801
    1801
  • Thumbnail: Page 
1802
    1802
  • Thumbnail: Page 
1803
    1803
  • Thumbnail: Page 
1804
    1804
  • Thumbnail: Page 
1805
    1805
  • Thumbnail: Page 
1806
    1806
  • Thumbnail: Page 
1807
    1807
  • Thumbnail: Page 
1808
    1808
  • Thumbnail: Page 
1809
    1809
  • Thumbnail: Page 
1810
    1810
  • Thumbnail: Page 
1811
    1811
  • Thumbnail: Page 
1812
    1812
  • Thumbnail: Page 
1813
    1813
  • Thumbnail: Page 
1814
    1814
  • Thumbnail: Page 
1815
    1815
  • Thumbnail: Page 
1816
    1816
  • Thumbnail: Page 
1817
    1817
  • Thumbnail: Page 
1818
    1818
  • Thumbnail: Page 
1819
    1819
  • Thumbnail: Page 
1820
    1820
  • Thumbnail: Page 
1821
    1821
  • Thumbnail: Page 
1822
    1822
  • Thumbnail: Page 
1823
    1823
  • Thumbnail: Page 
1824
    1824
  • Thumbnail: Page 
1825
    1825
  • Thumbnail: Page 
1826
    1826
  • Thumbnail: Page 
1827
    1827
  • Thumbnail: Page 
1828
    1828
  • Thumbnail: Page 
1829
    1829
  • Thumbnail: Page 
1830
    1830
  • Thumbnail: Page 
1831
    1831
  • Thumbnail: Page 
1832
    1832
  • Thumbnail: Page 
1833
    1833
  • Thumbnail: Page 
1834
    1834
  • Thumbnail: Page 
1835
    1835
  • Thumbnail: Page 
1836
    1836
  • Thumbnail: Page 
1837
    1837
  • Thumbnail: Page 
1838
    1838
  • Thumbnail: Page 
1839
    1839
  • Thumbnail: Page 
1840
    1840
  • Thumbnail: Page 
1841
    1841
  • Thumbnail: Page 
1842
    1842
  • Thumbnail: Page 
1843
    1843