Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Entropy Inequalities for Unbounded Spin Systems

Paolo Dai Pra, Anna Maria Paganoni and Gustavo Posta
The Annals of Probability
Vol. 30, No. 4 (Oct., 2002), pp. 1959-1976
Stable URL: http://www.jstor.org/stable/1558841
Page Count: 18
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Entropy Inequalities for Unbounded Spin Systems
Preview not available

Abstract

We consider nonconservative, reversible spin systems, with unbounded discrete spins. We show that for a class of these dynamics in a high temperature regime, the relative entropy with respect to the equilibrium distribution decays exponentially in time, although the logarithmic-Sobolev inequality fails. To this end we prove a weaker modification of the logarithmic-Sobolev inequality.

Page Thumbnails

  • Thumbnail: Page 
1959
    1959
  • Thumbnail: Page 
1960
    1960
  • Thumbnail: Page 
1961
    1961
  • Thumbnail: Page 
1962
    1962
  • Thumbnail: Page 
1963
    1963
  • Thumbnail: Page 
1964
    1964
  • Thumbnail: Page 
1965
    1965
  • Thumbnail: Page 
1966
    1966
  • Thumbnail: Page 
1967
    1967
  • Thumbnail: Page 
1968
    1968
  • Thumbnail: Page 
1969
    1969
  • Thumbnail: Page 
1970
    1970
  • Thumbnail: Page 
1971
    1971
  • Thumbnail: Page 
1972
    1972
  • Thumbnail: Page 
1973
    1973
  • Thumbnail: Page 
1974
    1974
  • Thumbnail: Page 
1975
    1975
  • Thumbnail: Page 
1976
    1976