Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Extracellular Matrix Organization in Developing Muscle: Correlation with Acetylcholine Receptor Aggregates

Ellen Kahn Bayne, M. John Anderson and Douglas M. Fambrough
The Journal of Cell Biology
Vol. 99, No. 4, Part 1 (Oct., 1984), pp. 1486-1501
Stable URL: http://www.jstor.org/stable/1611079
Page Count: 16
  • More info
  • Cite this Item
Extracellular Matrix Organization in Developing Muscle: Correlation with Acetylcholine Receptor Aggregates
Preview not available

Abstract

Monoclonal antibodies recognizing laminin, heparan sulfate proteoglycan, fibronectin, and two apparently novel connective tissue components have been used to examine the organization of extracellular matrix of skeletal muscle in vivo and in vitro. Four of the five monoclonal antibodies are described for the first time here. Immunocytochemical experiments with frozen-sectioned muscle demonstrated that both the heparan sulfate proteoglycan and laminin exhibited staining patterns identical to that expected for components of the basal lamina. In contrast, the remaining matrix constituents were detected in all regions of muscle connective tissue: the endomysium, perimysium, and epimysium. Embryonic muscle cells developing in culture elaborated an extracellular matrix, each antigen exhibiting a unique distribution. Of particular interest was the organization of extracellular matrix on myotubes: the build-up of matrix components was most apparent in plaques overlying clusters of an integral membrane protein, the acetylcholine receptor (AChR). The heparan sulfate proteoglycan was concentrated at virtually all AChR clusters and showed a remarkable level of congruence with receptor organization; laminin was detected at 70-95% of AChR clusters but often was not completely co-distributed with AChR within the cluster; fibronectin and the two other extracellular matrix antigens occurred at ∼20, 8, and 2% of the AChR clusters, respectively, and showed little or no congruence with AChR. From observations on the distribution of extracellular matrix components in tissue cultured fibroblasts and myogenic cells, several ideas about the organization of extracellular matrix are suggested. (a) Congruence between AChR clusters and heparan sulfate proteoglycan suggests the existence of some linkage between the two molecules, possibly important for regulation of AChR distribution within the muscle membrane. (b) The qualitatively different patterns of extracellular matrix organization over myotubes and fibroblasts suggest that each of these cell types uses somewhat different means to regulate the assembly of extracellular matrix components within its domain. (c) The limited co-distribution of different components within the extracellular matrix in vitro and the selective immune precipitation of each antigen from conditioned medium suggest that each extracellular matrix component is secreted in a form that is not complexed with other matrix constituents.

Page Thumbnails

  • Thumbnail: Page 
1486
    1486
  • Thumbnail: Page 
1487
    1487
  • Thumbnail: Page 
1488
    1488
  • Thumbnail: Page 
1489
    1489
  • Thumbnail: Page 
1490
    1490
  • Thumbnail: Page 
1491
    1491
  • Thumbnail: Page 
1492
    1492
  • Thumbnail: Page 
1493
    1493
  • Thumbnail: Page 
1494
    1494
  • Thumbnail: Page 
1495
    1495
  • Thumbnail: Page 
1496
    1496
  • Thumbnail: Page 
1497
    1497
  • Thumbnail: Page 
1498
    1498
  • Thumbnail: Page 
1499
    1499
  • Thumbnail: Page 
1500
    1500
  • Thumbnail: Page 
1501
    1501