Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Bacterial Lipopolysaccharide Suppresses the Production of Catalytically Active Lysosomal Acid Hydrolases in Human Macrophages

David W. H. Riches and Peter M. Henson
The Journal of Cell Biology
Vol. 102, No. 5 (May, 1986), pp. 1606-1614
Stable URL: http://www.jstor.org/stable/1611824
Page Count: 9
  • More info
  • Cite this Item
Bacterial Lipopolysaccharide Suppresses the Production of Catalytically Active Lysosomal Acid Hydrolases in Human Macrophages
Preview not available

Abstract

Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and β-glucuronidase) in human monocyte-derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro-hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall functional status of these cells in response to this bacterial product.

Page Thumbnails

  • Thumbnail: Page 
1606
    1606
  • Thumbnail: Page 
1607
    1607
  • Thumbnail: Page 
1608
    1608
  • Thumbnail: Page 
1609
    1609
  • Thumbnail: Page 
1610
    1610
  • Thumbnail: Page 
1611
    1611
  • Thumbnail: Page 
1612
    1612
  • Thumbnail: Page 
1613
    1613
  • Thumbnail: Page 
1614
    1614