Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps

Hagai Abeliovich, William A. Dunn Jr., John Kim and Daniel J. Klionsky
The Journal of Cell Biology
Vol. 151, No. 5 (Nov. 27, 2000), pp. 1025-1033
Stable URL: http://www.jstor.org/stable/1620243
Page Count: 9
  • More info
  • Cite this Item
Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps
Preview not available

Abstract

Rapamycin, an antifungal macrolide antibiotic, mimics starvation conditions in Saccharomyces cerevisiae through activation of a general G0 program that includes widespread effects on translation and transcription. Macroautophagy, a catabolic membrane trafficking phenomenon, is a prominent part of this response. Two views of the induction of autophagy may be considered. In one, up-regulation of proteins involved in autophagy causes its induction, implying that autophagy is the result of a signal transduction mechanism leading from Tor to the transcriptional and translational machinery. An alternative hypothesis postulates the existence of a dedicated signal transduction mechanism that induces autophagy directly. We tested these possibilities by assaying the effects of cycloheximide and specific mutations on the induction of autophagy. We find that induction of autophagy takes place in the absence of de novo protein synthesis, including that of specific autophagy-related proteins that are up-regulated in response to rapamycin. We also find that dephosphorylation of Apg13p, a signal transduction event that correlates with the onset of autophagy, is also independent of new protein synthesis. Finally, our data indicate that autophagosomes that form in the absence of protein synthesis are significantly smaller than normal, indicating a role for de novo protein synthesis in the regulation of autophagosome expansion. Our results define the existence of a signal transduction-dependent nucleation step and a separate autophagosome expansion step that together coordinate autophagosome biogenesis.

Page Thumbnails

  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033