Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

An Improved Dual Based Algorithm for the Generalized Assignment Problem

Monique Guignard and Moshe B. Rosenwein
Operations Research
Vol. 37, No. 4 (Jul. - Aug., 1989), pp. 658-663
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/171267
Page Count: 6
  • Download ($30.00)
  • Cite this Item
An Improved Dual Based Algorithm for the Generalized Assignment Problem
Preview not available

Abstract

The generalized assignment problem (GAP) determines the minimum cost assignment of n jobs to m agents such that each job is assigned to exactly one agent, subject to an agent's capacity. Existing solution algorithms have not solved problems with more than 100 decision variables. This paper designs an optimization algorithm for the GAP that effectively solves problems with up to 500 variables. Compared with existing procedures, this algorithm requires fewer enumeration nodes and shorter running times. Improved performance stems from: an enhanced Lagrangian dual ascent procedure that solves a Lagrangian dual at each enumeration node; adding a surrogate constraint to the Lagrangian relaxed model; and an elaborate branch-and-bound scheme. An empirical investigation of various problem structures, not considered in existing literature, is also presented.

Page Thumbnails

  • Thumbnail: Page 
658
    658
  • Thumbnail: Page 
659
    659
  • Thumbnail: Page 
660
    660
  • Thumbnail: Page 
661
    661
  • Thumbnail: Page 
662
    662
  • Thumbnail: Page 
663
    663