Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Worst-Case Analysis of Heuristics for the Bin Packing Problem with General Cost Structures

Shoshana Anily, Julien Bramel and David Simchi-Levi
Operations Research
Vol. 42, No. 2 (Mar. - Apr., 1994), pp. 287-298
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/171672
Page Count: 12
  • Download ($30.00)
  • Cite this Item
Worst-Case Analysis of Heuristics for the Bin Packing Problem with General Cost Structures
Preview not available

Abstract

We consider the famous bin packing problem where a set of items must be stored in bins of equal capacity. In the classical version, the objective is to minimize the number of bins used. Motivated by several optimization problems that occur in the context of the storage of items, we study a more general cost structure where the cost of a bin is a concave function of the number of items in the bin. The objective is to store the items in such a way that total cost is minimized. Such cost functions can greatly alter the way the items should be assigned to the bins. We show that some of the best heuristics developed for the classical bin packing problem can perform poorly under the general cost structure. On the other hand, the so-called next-fit increasing heuristic has an absolute worst-case bound of no more than 1.75 and an asymptotic worst-case bound of 1.691 for any concave and monotone cost function. Our analysis also provides a new worst-case bound for the well studied next-fit decreasing heuristic when the objective is to minimize the number of bins used.

Page Thumbnails

  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298