Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

The Response of Tundra Plant Biomass, Aboveground Production, Nitrogen, and CO2 Flux to Experimental Warming

Sarah E. Hobbie and F. Stuart Chapin, III
Ecology
Vol. 79, No. 5 (Jul., 1998), pp. 1526-1544
Published by: Wiley
DOI: 10.2307/176774
Stable URL: http://www.jstor.org/stable/176774
Page Count: 19
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
The Response of Tundra Plant Biomass, Aboveground Production, Nitrogen, and CO2 Flux to Experimental Warming
Preview not available

Abstract

We manipulated air temperature in tussock tundra near Toolik Lake, Alaska, and determined the consequences for total plant biomass, aboveground net primary production (ANPP), ecosystem nitrogen (N) pools and N uptake, and ecosystem CO2 flux. After 3.5 growing seasons, in situ plastic greenhouses that raised air temperature during the growing season had little effect on total biomass, N content, or growing-season N uptake of the major plant and soil pools. Similarly, vascular ANPP and net ecosystem CO2 exchange did not change with warming, although net primary production of mosses decreased with warming. Such general lack of response supports the hypothesis that productivity in tundra is constrained by the indirect effects of cold temperatures (e.g., low nutrient availability or short growing-season length) rather than by cold growing-season temperatures per se. Despite no effect on net ecosystem CO2 flux, air warming stimulated early-season gross photosynthesis (GP) and ecosystem respiration (ER) throughout the growing season. This increased carbon turnover was probably associated with species-level responses to increased air temperature. Warming increased the aboveground biomass of the overstory shrub, dwarf birch (Betula nana), and caused a significant net redistribution of N from the understory evergreen shrub, Vaccinium vitis-idaea, to B. nana, despite no effects on soil temperature, total plant N, or N availability. Thus, although air warming had no effect on total ecosystem N pools, it did mediate N distribution within the plant community. The early-season stimulation of GP is consistent with warming effects on leaf expansion of dominant shrubs (including B. nana) observed in other studies in tussock tundra. The stimulation of ER probably resulted from maintenance and growth respiration associated with higher aboveground B. nana biomass production and higher root N uptake and/or turnover in the greenhouses. The species responses to warming are consistent with changes in plant species assemblages associated with past warming and suggest that future warming may increase the abundance of B. nana in tussock tundra. We conclude that a 4 C rise in air temperature alone will significantly stimulate carbon turnover in tundra but will have little effect on net carbon balance.

Page Thumbnails

  • Thumbnail: Page 
1526
    1526
  • Thumbnail: Page 
1527
    1527
  • Thumbnail: Page 
1528
    1528
  • Thumbnail: Page 
1529
    1529
  • Thumbnail: Page 
1530
    1530
  • Thumbnail: Page 
1531
    1531
  • Thumbnail: Page 
1532
    1532
  • Thumbnail: Page 
1533
    1533
  • Thumbnail: Page 
1534
    1534
  • Thumbnail: Page 
1535
    1535
  • Thumbnail: Page 
1536
    1536
  • Thumbnail: Page 
1537
    1537
  • Thumbnail: Page 
1538
    1538
  • Thumbnail: Page 
1539
    1539
  • Thumbnail: Page 
1540
    1540
  • Thumbnail: Page 
1541
    1541
  • Thumbnail: Page 
1542
    1542
  • Thumbnail: Page 
1543
    1543
  • Thumbnail: Page 
1544
    1544