Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains

E. V. J. Tanner, P. M. Vitousek and E. Cuevas
Ecology
Vol. 79, No. 1 (Jan., 1998), pp. 10-22
Published by: Wiley
DOI: 10.2307/176860
Stable URL: http://www.jstor.org/stable/176860
Page Count: 13
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains
Preview not available

Abstract

This article reviews literature and summarizes experiments to investigate the extent to which productivity of tropical montane rain forests is constrained by low nutrient supply. On any one mountain, with increase in altitude foliar N decreases, and P and K usually decrease, but Ca and Mg show no consistent trend. However for a wide range of sites N, P, K, Mg, and Ca show no trends. Litterfall contents of N and P and often K, Ca, and Mg are lower in montane forests than in lowland forests, mainly because of reduced litterfall mass, but N and P concentrations are also lower in forests above 1500 m. Tropical montane soils usually have more soil organic matter per unit ground area; N mineralization levels are lower at higher altitudes in Costa Rica, and extractable and total soil P are lower in sites with lower litterfall P concentrations. We speculate that many lowland forests are limited by P and many montane forests by N. Fertilization studies on ash-derived montane soils in Hawai'i showed a trend for a switch from N limitation on young soils to P, or N and P, limitation on soils over older substrates. Jamaican montane trees were limited by N and by P separately. Venezuelan montane trees were limited by N. The sites in Jamaica and Venezuela have soils of indeterminate age. Taken together these results show that nutrient limitation is widespread in montane soils (all sites have responded to at least one nutrient) and that the particular nutrient(s) that limit(s) production may differ for explicable reasons. First results from lowland forests on sandy soils in Kalimantan show N or simultaneous N and P limitation. Many more experiments, especially in lowland forests, are needed to test our speculation that P usually limits productivity in tropical lowland rain forests and that N limits productivity in tropical montane rain forests.

Page Thumbnails

  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22