If you need an accessible version of this item please contact JSTOR User Support

Adaptation to the Thermal Climate of North America by the Pitcher-Plant Mosquito, Wyeomyia smithii

William E. Bradshaw, Shizuo Fujiyama and Christina M. Holzapfel
Ecology
Vol. 81, No. 5 (May, 2000), pp. 1262-1272
DOI: 10.2307/177206
Stable URL: http://www.jstor.org/stable/177206
Page Count: 11
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Adaptation to the Thermal Climate of North America by the Pitcher-Plant Mosquito, Wyeomyia smithii
Preview not available

Abstract

We are concerned with the climatic factors that affect the adaptive radiation of species into and within the temperate zone. As one progresses northward, there is a decrease in summer temperatures and a concomitant increase in the duration and intensity of winter cold. For the pitcher-plant mosquito, Wyeomyia smithii, it has been shown previously that (1) range expansion and evolution has proceeded from south to north, and (2) either realistically hot summer temperatures or a simulated 7-mo winter reduce fitness by 60% or more in two New Jersey (40 degrees N) populations. Herein, we compare the relative fitness of nine populations of W. smithii from 30 degrees to 50 degrees N when exposed to these same stressful summer temperatures and simulated winter. We determined the survivorship, fecundity, and fertility of five cohorts from each population at each temperature in both environments, and we calculated the cohort replacement rate (R0) as the product of these three component traits. Survivorship declined with increasing latitude in the summer, but not the winter, environment. Fecundity was not correlated with latitude in either environment. Fertility declined with increasing latitude in both environments, R0 was not correlated with latitude in either environment. Hence, the interpretation of the adaptive responses to climate can depend critically on the trait being examined. Because R0 is a composite index of fitness that includes any trade-offs among its constituent traits, we place greater reliance on its noncorrelation with latitude. Therefore, we conclude that, despite their clear impact on fitness, summer heat and winter cold have had little impact on the adaptive evolution of W. smithii to the climatic gradient of North America. The decline in summer heat and increase in the duration and intensity of winter cold as one moves north also impose a latitudinal gradient in the length of the favorable growing season. Many plants and animals use daylength to cue the seasonal events in their life cycles. We then argue that the timing of seasonal development mediated by photoperiodic response constitutes the most immediate adaptation of populations to novel temperate climates, and that adaptation of thermal responsiveness to summer heat or winter cold takes place over a longer time scale or taxonomic distance.

Page Thumbnails

  • Thumbnail: Page 
1262
    1262
  • Thumbnail: Page 
1263
    1263
  • Thumbnail: Page 
1264
    1264
  • Thumbnail: Page 
1265
    1265
  • Thumbnail: Page 
1266
    1266
  • Thumbnail: Page 
1267
    1267
  • Thumbnail: Page 
1268
    1268
  • Thumbnail: Page 
1269
    1269
  • Thumbnail: Page 
1270
    1270
  • Thumbnail: Page 
1271
    1271
  • Thumbnail: Page 
1272
    1272