Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Plastic Phenotypic Response to Light of 16 Congeneric Shrubs from a Panamanian Rainforest

Fernando Valladares, S. Joseph Wright, Eloisa Lasso, Kaoru Kitajima and Robert W. Pearcy
Ecology
Vol. 81, No. 7 (Jul., 2000), pp. 1925-1936
Published by: Wiley
DOI: 10.2307/177282
Stable URL: http://www.jstor.org/stable/177282
Page Count: 12
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Plastic Phenotypic Response to Light of 16 Congeneric Shrubs from a Panamanian Rainforest
Preview not available

Abstract

The comparative phenotypic plasticity of 16 species of tropical rainforest shrubs (genus Psychotria, Rubiaceae) was investigated by growing plants in three light environments on Barro Colorado Island (BCI, Panama). The three light environments gave daily photon flux densities (PPFD) similar to the natural light gradient from shaded forest understory to small and large canopy gaps. Six of the species are principally found in gaps or forest edge environments, whereas the other ten species are principally found in shaded understories. Interactions between light treatment and species resulted in unpredictable mean phenotypic expression across light treatments. Shoot relative growth rates (RGR) were similar for understory and gap species in the low light treatment. Gap species had significantly greater shoot RGR in the intermediate light treatment than in the high light treatment. Mean plasticity was significantly lower for morphological variables when compared to physiological variables, while variation in plasticity was significantly greater for structural variables. Significant differences between gap and understory species were found in the plasticity of six out of the seven variables. The mean phenotypic plasticity of the seven variables was significantly greater for gap than for understory species. The high plasticity of gap species was consistent with the hypothesis that specialization in a more favorable environment increases plasticity. The species exhibited a wide range of leaf longevities, from four to 29 months, with gap species having, on average, shorter leaf life-span than understory species. Mean phenotypic plasticity decreased with increasing leaf longevity. Selection for greater plasticity may be stronger in the gap species because gaps exhibit a relatively predictable decrease in PPFD for which plasticity could be adaptive. While we have found a significant correlation between phenotypic plasticity and habitat affiliation, phylogeny (subgenus ascription) was not correlated with plasticity or with plant performance in any given PPFD treatment, reinforcing the hypothesis that phenotypic plasticity has evolved through natural selection in this diverse genus.

Page Thumbnails

  • Thumbnail: Page 
1925
    1925
  • Thumbnail: Page 
1926
    1926
  • Thumbnail: Page 
1927
    1927
  • Thumbnail: Page 
1928
    1928
  • Thumbnail: Page 
1929
    1929
  • Thumbnail: Page 
1930
    1930
  • Thumbnail: Page 
1931
    1931
  • Thumbnail: Page 
1932
    1932
  • Thumbnail: Page 
1933
    1933
  • Thumbnail: Page 
1934
    1934
  • Thumbnail: Page 
1935
    1935
  • Thumbnail: Page 
1936
    1936