Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Forecasting the Forecasts of Others

Robert M. Townsend
Journal of Political Economy
Vol. 91, No. 4 (Aug., 1983), pp. 546-588
Stable URL: http://www.jstor.org/stable/1831068
Page Count: 43
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Forecasting the Forecasts of Others
Preview not available

Abstract

This paper explores the formulation and analysis of linear equilibrium models of investment in which learning is perpetual and informationally decentralized firms need never share the same beliefs concerning time series relevant to their decisions. Recursive, Kalman filtering techniques are shown to be applicable in an illustrative, hierarchical information structure, and a nonlinear technique of undetermined coefficients is shown to be applicable in an illustrative, symmetric information structure in which there is a confounding of laws of motion with forecasting problems. The equilibrium time series of these models can display interesting movement in response to shocks and measurement errors, including persistence, certain cross-correlation properties, and damped oscillations. That is, forecasts errors are serially correlated over decision makers and serially correlated over time in a certain crucial sense. More generally, these models do place restrictions on observed time series and can be fitted to data.

Page Thumbnails

  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579
  • Thumbnail: Page 
580
    580
  • Thumbnail: Page 
581
    581
  • Thumbnail: Page 
582
    582
  • Thumbnail: Page 
583
    583
  • Thumbnail: Page 
584
    584
  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588