Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On Grunbaum and Retrocausation in Classical Electrodynamics

Charles Nissim-Sabat
Philosophy of Science
Vol. 46, No. 1 (Mar., 1979), pp. 118-135
Stable URL: http://www.jstor.org/stable/186805
Page Count: 18
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On Grunbaum and Retrocausation in Classical Electrodynamics
Preview not available

Abstract

A detailed analysis is made of Grunbaum's claim that the Abraham-Lorentz (AL) and Dirac-Lorentz (DL) equations have no bearing on causality. It is pointed out that (a) both equations are derived from F = ma, and thus should obey the same causality conditions as Newton's law, (b) independently of what boundary conditions are imposed, non-causal behavior is always along the same straight line as the force, (c) the distinction in status between laws and boundary conditions which Grunbaum imposes is one which is not always useful, especially since what is a law in one formulation of the theory can become a boundary condition in another, and thus it is argued that a complete theory must be such that laws and boundary conditions form a coherent whole, (d) the asymptotic boundary conditions that are applied are in agreement with experiment, (e) the AL equation is such that if the "effect," the acceleration as function of time, is known, then the "cause," the force, can be determined. In addition, it is noted that in the DL equation the acceleration at times later than t influences the acceleration at t. Finally, it is pointed out that electrodynamics is indeed a causal field theory, and that retrocausality is due to the transition from a field description to a particle description.

Page Thumbnails

  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135