Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Evolution, Population Thinking, and Essentialism

Elliott Sober
Philosophy of Science
Vol. 47, No. 3 (Sep., 1980), pp. 350-383
Stable URL: http://www.jstor.org/stable/186950
Page Count: 34
  • Read Online (Free)
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Evolution, Population Thinking, and Essentialism
Preview not available

Abstract

Ernst Mayr has argued that Darwinian theory discredited essentialist modes of thought and replaced them with what he has called "population thinking". In this paper, I characterize essentialism as embodying a certain conception of how variation in nature is to be explained, and show how this conception was undermined by evolutionary theory. The Darwinian doctrine of evolutionary gradualism makes it impossible to say exactly where one species ends and another begins; such line-drawing problems are often taken to be the decisive reason for thinking that essentialism is untenable. However, according to the view of essentialism I suggest, this familiar objection is not fatal to essentialism. It is rather the essentialist's use of what I call the natural state model for explaining variation which clashes with evolutionary theory. This model implemented the essentialist's requirement that properties of populations be defined in terms of properties of member organisms. Requiring such constituent definitions is reductionistic in spirit; additionally, evolutionary theory shows that such definitions are not available, and, moreover, that they are not needed to legitimize population-level concepts. Population thinking involves the thesis that population concepts may be legitimized by showing their connections with each other, even when they are not reducible to concepts applying at lower levels of organization. In the paper, I develop these points by describing Aristotle's ideas on the origins of biological variation; they are a classic formulation of the natural state model. I also describe how the development of statistical ideas in the 19th century involved an abandoning of the natural state model.

Page Thumbnails

  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383