Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Self-Organization and Irreducibly Complex Systems: A Reply to Shanks and Joplin

Michael J. Behe
Philosophy of Science
Vol. 67, No. 1 (Mar., 2000), pp. 155-162
Stable URL: http://www.jstor.org/stable/188618
Page Count: 8
  • Read Online (Free)
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Self-Organization and Irreducibly Complex Systems: A Reply to Shanks and Joplin
Preview not available

Abstract

Some biochemical systems require multiple, well-matched parts in order to function, and the removal of any of the parts eliminates the function. I have previously labeled such systems "irreducibly complex," and argued that they are stumbling blocks for Darwinian theory. Instead I proposed that they are best explained as the result of deliberate intelligent design. In a recent article Shanks and Joplin analyze and find wanting the use of irreducible complexity as a marker for intelligent design. Their primary counterexample is the Belousov-Zhabotinsky reaction, a self-organizing system in which competing reaction pathways result in a chemical oscillator. In place of irreducible complexity they offer the idea of "redundant complexity," meaning that biochemical pathways overlap so that a loss of one or even several components can be accommodated without complete loss of function. Here I note that complexity is a quantitative property, so that conclusions we draw will be affected by how well-matched the components of a system are. I also show that not all biochemical systems are redundant. The origin of non-redundant systems requires a different explanation than redundant ones.

Page Thumbnails

  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160
  • Thumbnail: Page 
161
    161
  • Thumbnail: Page 
162
    162