Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Error Produced by Linearization in Mathematical Programming

W. J. Baumol and R. C. Bushnell
Econometrica
Vol. 35, No. 3/4 (Jul. - Oct., 1967), pp. 447-471
Published by: The Econometric Society
DOI: 10.2307/1905648
Stable URL: http://www.jstor.org/stable/1905648
Page Count: 25
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Error Produced by Linearization in Mathematical Programming
Preview not available

Abstract

This paper offers a qualitative theoretical analysis of the error that may arise when a linear programming calculation is used to solve a problem involving some degree of nonlinearity. Six propositions are developed: (1) a linear approximation to a nonlinear program will not necessarily yield the true maximum; (2) it need not provide an answer better than a randomly chosen initial solution; (3) it may not even provide the best possible corner solution; (4) a reduction in the curvature of the profit surface does not always guarantee improvement in the accuracy of a linear approximation; (5) proximity of the initial point to the maximum need not increase the accuracy of the linear approximation; and (6) only if the objective function is monotone throughout can we be assured that a linear approximation will yield results which represent an improvement over the initial point. The paper also describes sampling experiments in which the correct solution of a quadratic programming problem subject to linear constraints was compared with the solution of a linear programming problem obtained by replacing the quadratic maximand by its tangent hyperplane at the initial point and by other linear approximations. In general, the linear programming calculations did not yield results very close to the true maximum nor did the approximation improve substantially as the curvature of the objective function was reduced.

Page Thumbnails

  • Thumbnail: Page 
447
    447
  • Thumbnail: Page 
448
    448
  • Thumbnail: Page 
449
    449
  • Thumbnail: Page 
450
    450
  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469
  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471