If you need an accessible version of this item please contact JSTOR User Support

The Graduation of Income Distributions

Peter R. Fisk
Econometrica
Vol. 29, No. 2 (Apr., 1961), pp. 171-185
Published by: Econometric Society
DOI: 10.2307/1909287
Stable URL: http://www.jstor.org/stable/1909287
Page Count: 15
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Graduation of Income Distributions
Preview not available

Abstract

A variety of functional forms have been suggested, in the past, as suitable for describing distributions of income. Some have been derived from models "explaining" the generation of an income distribution, while others are claimed only to fit observations reasonably well. One which has not been widely considered is the sech square distribution. This distribution has certain useful characteristics, such as simple Lorenz measures of inequality and a simple method of graphical analysis, which make it a useful tool in examining and comparing distributions of income. The differential equation from which the sech square distribution is derived can be varied to allow a wide range of different distribution forms to be fitted. A similarity exists between this distribution function and the Pareto and Champernowne distribution functions. Some of the characteristics of the latter distribution are discussed in the paper.

Page Thumbnails

  • Thumbnail: Page 
171
    171
  • Thumbnail: Page 
172
    172
  • Thumbnail: Page 
173
    173
  • Thumbnail: Page 
174
    174
  • Thumbnail: Page 
175
    175
  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185