Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Aggregation and Linearity in the Provision of Intertemporal Incentives

Bengt Holmstrom and Paul Milgrom
Econometrica
Vol. 55, No. 2 (Mar., 1987), pp. 303-328
Published by: The Econometric Society
DOI: 10.2307/1913238
Stable URL: http://www.jstor.org/stable/1913238
Page Count: 26
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Aggregation and Linearity in the Provision of Intertemporal Incentives
Preview not available

Abstract

We consider the problem of providing incentives over time for an agent with constant absolute risk aversion. The optimal compensation scheme is found to be a linear function of a vector of N accounts which count the number of times that each of the N kinds of observable events occurs. The number N is independent of the number of time periods, so the accounts may entail substantial aggregation. In a continuous time version of the problem, the agent controls the drift rate of a vector of accounts that is subject to frequent, small random fluctuations. The solution is as if the problem were the static one in which the agent controls only the mean of a multivariate normal distribution and the principal is constrained to use a linear compensation rule. If the principal can observe only coarser linear aggregates, such as revenues, costs, or profits, the optimal compensation scheme is then a linear function of those aggregates. The combination of exponential utility, normal distributions, and linear compensation schemes makes computations and comparative statics easy to do, as we illustrate. We interpret our linearity results as deriving in part from the richness of the agent's strategy space, which makes it possible for the agent to undermine and exploit complicated, nonlinear functions of the accounting aggregates.

Page Thumbnails

  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328