Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo

T. Kloek and H. K. van Dijk
Econometrica
Vol. 46, No. 1 (Jan., 1978), pp. 1-19
Published by: The Econometric Society
DOI: 10.2307/1913641
Stable URL: http://www.jstor.org/stable/1913641
Page Count: 19
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo
Preview not available

Abstract

Monte Carlo (MC) is used to draw parameter values from a distribution defined on the structural parameter space of an equation system. Making use of the prior density, the likelihood, and Bayes' Theorem it is possible to estimate posterior moments of both structural and reduced form parameters. The MC method allows a rather liberal choice of prior distributions. The number of elementary operations to be preformed need not be an explosive function of the number of parameters involved. The method overcomes some existing difficulties of applying Bayesian methods to medium size models. The method is applied to a small scale macro model. The prior information used stems from considerations regarding short and long run behavior of the model and form extraneous observations on empirical long term ratios of economic variables. Likelihood contours for several parameter combinations are plotted, and some marginal posterior densities are assessed by MC.

Page Thumbnails

  • Thumbnail: Page 
1
    1
  • Thumbnail: Page 
2
    2
  • Thumbnail: Page 
3
    3
  • Thumbnail: Page 
4
    4
  • Thumbnail: Page 
5
    5
  • Thumbnail: Page 
6
    6
  • Thumbnail: Page 
7
    7
  • Thumbnail: Page 
8
    8
  • Thumbnail: Page 
9
    9
  • Thumbnail: Page 
10
    10
  • Thumbnail: Page 
11
    11
  • Thumbnail: Page 
12
    12
  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19