Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Semiparametric Estimation of Index Coefficients

James L. Powell, James H. Stock and Thomas M. Stoker
Econometrica
Vol. 57, No. 6 (Nov., 1989), pp. 1403-1430
Published by: The Econometric Society
DOI: 10.2307/1913713
Stable URL: http://www.jstor.org/stable/1913713
Page Count: 28
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Semiparametric Estimation of Index Coefficients
Preview not available

Abstract

This paper gives a solution to the problem of estimating coefficients of index models, through the estimation of the density-weighted average derivative of a general regression function. We show how a normalized version of the density-weighted average derivatives can be estimated by certain linear instrumental variables coefficients. Both of the estimators are computationally simple, root-N-consistent and asymptotically normal; their statistical properties do not rely on functional form assumptions on the regression function or the distribution of the data. The estimators, based on sample analogues of the product moment representation of the average derivative, are constructed using nonparametric kernel estimators of the density of the regressors. Asymptotic normality is established using extensions of classical U-statistic theorems, and asymptotic bias is reduced through use of a higher-order kernel. Consistent estimators of the asymptotic variance-covariance matrices of the estimators are given, and a limited Monte Carlo simulation is used to study the practical performance of the procedures.

Page Thumbnails

  • Thumbnail: Page 
1403
    1403
  • Thumbnail: Page 
1404
    1404
  • Thumbnail: Page 
1405
    1405
  • Thumbnail: Page 
1406
    1406
  • Thumbnail: Page 
1407
    1407
  • Thumbnail: Page 
1408
    1408
  • Thumbnail: Page 
1409
    1409
  • Thumbnail: Page 
1410
    1410
  • Thumbnail: Page 
1411
    1411
  • Thumbnail: Page 
1412
    1412
  • Thumbnail: Page 
1413
    1413
  • Thumbnail: Page 
1414
    1414
  • Thumbnail: Page 
1415
    1415
  • Thumbnail: Page 
1416
    1416
  • Thumbnail: Page 
1417
    1417
  • Thumbnail: Page 
1418
    1418
  • Thumbnail: Page 
1419
    1419
  • Thumbnail: Page 
1420
    1420
  • Thumbnail: Page 
1421
    1421
  • Thumbnail: Page 
1422
    1422
  • Thumbnail: Page 
1423
    1423
  • Thumbnail: Page 
1424
    1424
  • Thumbnail: Page 
1425
    1425
  • Thumbnail: Page 
1426
    1426
  • Thumbnail: Page 
1427
    1427
  • Thumbnail: Page 
1428
    1428
  • Thumbnail: Page 
1429
    1429
  • Thumbnail: Page 
1430
    1430