If you need an accessible version of this item please contact JSTOR User Support

The Logic of Experimental Questions

R. I. G. Hughes
PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association
Vol. 1982, Volume One: Contributed Papers (1982), pp. 243-256
Stable URL: http://www.jstor.org/stable/192671
Page Count: 14
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Logic of Experimental Questions
Preview not available

Abstract

The pair (A, Δ ), where A is a physical quantity (an observable) and Δ a subset of the reals, may be called an 'experimental question'. The set Q of experimental questions is, in classical mechanics, a Boolean algebra, and in quantum mechanics an orthomodular lattice (and also a transitive partial Boolean algebra). The question is raised: can we specify a priori what algebraic structure Q must have in any theory whatsoever? Several proposals suggesting that Q must be a lattice are discussed, and rejected in favor of the weak claim that Q must be a Boolean atlas.

Page Thumbnails

  • Thumbnail: Page 
[243]
    [243]
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256