Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Non-Turing Computers and Non-Turing Computability

Mark Hogarth
PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association
Vol. 1994, Volume One: Contributed Papers (1994), pp. 126-138
Stable URL: http://www.jstor.org/stable/193018
Page Count: 13
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Non-Turing Computers and Non-Turing Computability
Preview not available

Abstract

A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar ("close") to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation (e.g. intuitive, finitely programmed, limited in computational capability), a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given.

Page Thumbnails

  • Thumbnail: Page 
[126]
    [126]
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138