Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Non-Turing Computers and Non-Turing Computability

Mark Hogarth
PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association
Vol. 1994, Volume One: Contributed Papers (1994), pp. 126-138
Stable URL: http://www.jstor.org/stable/193018
Page Count: 13
  • Read Online (Free)
  • Download ($14.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Non-Turing Computers and Non-Turing Computability
Preview not available

Abstract

A true Turing machine (TM) requires an infinitely long paper tape. Thus a TM can be housed in the infinite world of Newtonian spacetime (the spacetime of common sense), but not necessarily in our world, because our world-at least according to our best spacetime theory, general relativity-may be finite. All the same, one can argue for the "existence" of a TM on the basis that there is no such housing problem in some other relativistic worlds that are similar ("close") to our world. But curiously enough-and this is the main point of this paper-some of these close worlds have a special spacetime structure that allows TMs to perform certain Turing unsolvable tasks. For example, in one kind of spacetime a TM can be used to solve first-order predicate logic and the halting problem. And in a more complicated spacetime, TMs can be used to decide arithmetic. These new computers serve to show that Church's thesis is a thoroughly contingent claim. Moreover, since these new computers share the fundamental properties of a TM in ordinary operation (e.g. intuitive, finitely programmed, limited in computational capability), a computability theory based on these non-Turing computers is no less worthy of investigation than orthodox computability theory. Some ideas about this new mathematical theory are given.

Page Thumbnails

  • Thumbnail: Page 
[126]
    [126]
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138