Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Adaptive Strategies and Energetics of Tail Autonomy in Lizards

Laurie J. Vitt, Justin D. Congdon and Nancy A. Dickson
Ecology
Vol. 58, No. 2 (Mar., 1977), pp. 326-337
Published by: Wiley
DOI: 10.2307/1935607
Stable URL: http://www.jstor.org/stable/1935607
Page Count: 12
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Adaptive Strategies and Energetics of Tail Autonomy in Lizards
Preview not available

Abstract

Various methods were used to study and qualify components of tail autotomy adaptation in four species of lizards; Coleonyx var eiegatus (Gekoniadae), Eumeces skiltonianus and Eumeces gilberti (Scincidae), and Gerrhomotus multicar inatus (Aguidae). High frequency of tail breaks in natural population of these species (65%, 62%, 52%, and 74% respectively) suggests the effectiveness of autotomy for predator escape. In species where tail autotomy is most important for escape, regenerated tails are as large or larger than the original tails. Regenerated tails were higher in lipids and energy than original tails, which were, in turn, higher than bodies. The species with alternate uses for the tail (other than predator escape via autotomy) exhibited lower rates of energy allocation to regeneration and the regenerated tails were lower in energy content (both per unit weight and total, proportionately) than tails of other species studied. Total growth energy allocated to tail regeneration varied from 24.7% in G. multicarinatus (the species least adapted for autotomy) to 56.5% in E. gilberti (a species highly adapted for autotomy). Regeneration was most rapid in short-lived early-maturing species, those with several breeding opportunities in a given season. Species with high probabilities of future reproductions (long-lived, late-maturing) and short, seasonally restricted breeding seasons, regenerated tails at low rates. Energy allocations to tail regeneration were varied within and among species. Generally, immatures of all species except G. multicarinatus allocated proportionately less to tail regeneration and more to body growth than adults. Energy allocations to tail regeneration in G. multicarnatus were relatively consistent across age groups. A summary of pathways by which autotomy adaptations may be selected for, or by which retention adaptations may evolve, is presented.

Page Thumbnails

  • Thumbnail: Page 
[326]
    [326]
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337