Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Physiological Ecology of Daphnia: A Dynamic Model of Growth and Reproduction

W. S. C. Gurney, E. McCauley, R. M. Nisbet and W. W. Murdoch
Ecology
Vol. 71, No. 2 (Apr., 1990), pp. 716-732
Published by: Wiley
DOI: 10.2307/1940325
Stable URL: http://www.jstor.org/stable/1940325
Page Count: 17
  • Get Access
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Physiological Ecology of Daphnia: A Dynamic Model of Growth and Reproduction
Preview not available

Abstract

In the preceding paper (McCauley et al. 1990) we developed a new model for the growth and fecundity of Daphnia based on a quantitative review of short-term physiological rates and energy allocation for D. pulex. In this paper, we formulate a fully dynamic version of this model and test its predictions against experimentally observed growth and fecundity schedules obtained independently under a variety of different experimental protocols. Preliminary testing falsifies two simplifying hypotheses made in our original development and we propose modifications of these hypotheses. With the aid of these modifications our model yields predictions that are in good agreement with a large body of data on the growth and fecundity schedules of individual D. pulex. Although our model contains 18 parameters, the values of the great majority are independently determined from short-term physiological measurements, leaving only two as freely adjustable @'fitting parameters.@' The target dataset, which contains four complete growth curves (@?80 observations) and 32 growth or fecundity characterizations, thus provides a stringent test of the model, and our success in matching our predictions to it provides strong evidence that measurements of short-term physiological rates can be used successfully as predictors of long-term growth and fecundity.

Page Thumbnails

  • Thumbnail: Page 
716
    716
  • Thumbnail: Page 
717
    717
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724
  • Thumbnail: Page 
725
    725
  • Thumbnail: Page 
726
    726
  • Thumbnail: Page 
727
    727
  • Thumbnail: Page 
728
    728
  • Thumbnail: Page 
729
    729
  • Thumbnail: Page 
730
    730
  • Thumbnail: Page 
731
    731
  • Thumbnail: Page 
732
    732