Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Controls of Plant and Soil Carbon in a Semihumid Temperate Grassland

T. R. Seastedt, C. C. Coxwell, D. S. Ojima and W. J. Parton
Ecological Applications
Vol. 4, No. 2 (May, 1994), pp. 344-353
Published by: Wiley
DOI: 10.2307/1941938
Stable URL: http://www.jstor.org/stable/1941938
Page Count: 10
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Controls of Plant and Soil Carbon in a Semihumid Temperate Grassland
Preview not available

Abstract

A modeling study evaluated the importance of photosynthetic pathways (C"3, C"4, or both) and management strategies to the foliage productivity and soil carbon characteristics of a semihumid temperate grassland subjected to various combinations of climate change. Model values for plant and soil characteristics were obtained at sites near Manhattan, Kansas, and the Manhattan climate record provided the nominal climatic drivers. Model runs used both actual monthly temperature and precipitation data for a 100-yr interval and average weather conditions generated from this record. Monthly temperatures were increased 2@?C, left unchanged, or decreased 2@?C; annual precipitation was increased 6 cm, left unchanged, or decreased 6 cm. All possible combinations of temperature and precipitation were then used in 100-yr simulations. Regardless of the specific climate scenario, plant production was lowest for C"3 grasses and highest for the mixed C"3-C"4 community. The nominal seasonal pattern of precipitation favored an active C"3 plant community in early to late spring, prior to the emergence of the C"4 vegetation. However, the higher growth and water use efficiencies of C"4 vegetation during summer contributed to the maximization response of the grasslands containing both C"3 and C"4 grasses. An analysis of variance of annual average values observed from 100-yr simulations was used to evaluate the relative importance of climate, photosynthetic pathways, and management activities (annually burned, burned every 4 yr, unburned, or lightly grazed) to plant production and soil carbon values. Photosynthetic pathway and precipitation were identified as the most significant single variables affecting foliage production; the interaction between photosynthetic and temperature was the most significant interaction term. Management treatments were by far the most important variables affecting soil carbon values, but 2@?C warming did produce substantial soil carbon losses from C"3 grasslands. Enhanced carbon fixation by the C"4 and C"3-C"4 plant communities negated the losses of soil carbon caused by enhanced soil respiration at warmer temperatures.

Page Thumbnails

  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353