Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Sea-Level Rise and the Reduction in Pine Forests in the Florida Keys

Michael S. Ross, Joseph J. O'Brien and Leonel da Silveira Lobo Sternberg
Ecological Applications
Vol. 4, No. 1 (Feb., 1994), pp. 144-156
Published by: Wiley
DOI: 10.2307/1942124
Stable URL: http://www.jstor.org/stable/1942124
Page Count: 13
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Sea-Level Rise and the Reduction in Pine Forests in the Florida Keys
Preview not available

Abstract

Forests dominated by Pinus elliottii var densa have undergone a reduction in area in the Florida Keys (USA). A previous investigation interpreted the presence of halophytic species in a former pine forest in Key Largo as evidence of sea-level rise. We therefore examined aerial photos and field evidence to learn how the 15-cm rise in local sea level over the last 70 yr had affected the distribution of pines on a second island, where intact pine forests still remained in 1991. The distribution of in situ dead pine stems showed that the area occupied by pines on Sugarloaf Key was 88 ha at some time prior to the earliest available aerial photographs, in 1935. The area of pine forest was reduced to 46 ha by 1935, and continued to decrease through 1991, when it covered 30 ha. The pattern of pine mortality was related to topographic position, with the areas where pines died earliest occupying the lowest elevations. Our analysis of current vegetation patterns showed that the areas of earliest pine mortality are now populated by a higher proportion of halophytic plant assemblages than areas of more recent pine mortality. We also compared the physiological responses of pines in two portions of the island: one where pine forest reduction had been most pronounced, and a second where the extent of the forest had changed little over the past 50 yr. Both groundwater and soil water salinity were higher in the area of rapid pine forest reduction, and the pines sampled there exhibited higher physiological stress, as indicated by pre-dawn water potential and stemwood carbon isotope ratios. These results suggest that the salinization of ground- and soil water that occurs as sea level rises is a major factor in the reduction of pine forests of Sugarloaf Key. If sea level continues to increase, the Florida Keys will experience a decline in both landscape and species diversity, as species-rich upland communities are replaced by simpler mangrove communities. This pattern may also occur in other low-lying island ecosystems with limited freshwater resources.

Page Thumbnails

  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156