Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Parabolic Equations for Curves on Surfaces Part I. Curves with p-Integrable Curvature

Sigurd Angenent
Annals of Mathematics
Second Series, Vol. 132, No. 3 (Nov., 1990), pp. 451-483
Published by: Annals of Mathematics
DOI: 10.2307/1971426
Stable URL: http://www.jstor.org/stable/1971426
Page Count: 33
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Parabolic Equations for Curves on Surfaces Part I. Curves with p-Integrable Curvature
Preview not available

Abstract

This is the first of a two-part paper in which we develop a theory of parabolic equations for curves on surfaces which can be applied to the so-called curve shortening of flow-by-mean-curvature problem, as well as to a number of models for phase transitions in two dimensions. We introduce a class of equations for which the initial value problem is solvable for initial data with p-integrable curvature, and we also give estimates for the rate at which the p-norms of the curvature must blow up, if the curve becomes singular in finite time. A detailed discussion of the way in which solutions can become singular and a method for "continuing the solution through a singularity" will be the subject of the second part.

Page Thumbnails

  • Thumbnail: Page 
[451]
    [451]
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461
  • Thumbnail: Page 
462
    462
  • Thumbnail: Page 
463
    463
  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
467
    467
  • Thumbnail: Page 
468
    468
  • Thumbnail: Page 
469
    469
  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471
  • Thumbnail: Page 
472
    472
  • Thumbnail: Page 
473
    473
  • Thumbnail: Page 
474
    474
  • Thumbnail: Page 
475
    475
  • Thumbnail: Page 
476
    476
  • Thumbnail: Page 
477
    477
  • Thumbnail: Page 
478
    478
  • Thumbnail: Page 
479
    479
  • Thumbnail: Page 
480
    480
  • Thumbnail: Page 
481
    481
  • Thumbnail: Page 
482
    482
  • Thumbnail: Page 
483
    483