Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Efficient Computation of the Fourier Transform on Finite Groups

Persi Diaconis and Daniel Rockmore
Journal of the American Mathematical Society
Vol. 3, No. 2 (Apr., 1990), pp. 297-332
DOI: 10.2307/1990955
Stable URL: http://www.jstor.org/stable/1990955
Page Count: 36
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Efficient Computation of the Fourier Transform on Finite Groups
Preview not available

Abstract

Let G be a finite group, f: G → C a function, and ρ an irreducible representation of G. The Fourier transform is defined as $\hat f(\rho) = \sum_{s \epsilon G}f(s) \rho(s)$. Direct computation for all irreducible representation involves order ∣ G ∣2 operations. We derive fast algorithms and develop them for the symmetric group Sn. There, (n!)2 is reduced to n(n!)a/2, where α is the constant for matrix multiplication (2.38 as of this writing). Variations of the algorithm allow efficient computation for "small" representations. A practical version of the algorithm is given on Sn. Numerical evidence is presented to show a speedup by a factor of 100 for n = 9.

Page Thumbnails

  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332