Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Decomposition for Combinatorial Geometries

Thomas H. Brylawski
Transactions of the American Mathematical Society
Vol. 171 (Sep., 1972), pp. 235-282
DOI: 10.2307/1996381
Stable URL: http://www.jstor.org/stable/1996381
Page Count: 48
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A Decomposition for Combinatorial Geometries
Preview not available

Abstract

A construction based on work by Tutte and Grothendieck is applied to a decomposition on combinatorial pregeometries in order to study an important class of invariants. The properties of this Tutte decomposition of a pregeometry into a subgeometry $G\backslash$ and contraction G/e is explored in a categorically integrated view using factored strong maps. After showing that direct sum decomposition distributes over the Tutte decomposition we construct a universal pair (R, t) where R is a free commutative ring with two generators corresponding to a loop and an isthmus; and t, the Tutte polynomial assigns a ring element to each pregeometry. Evaluations of t(G) give the Mobius function, characteristic polynomial, Crapo invariant, and numbers of subsets, bases, spanning and independent sets of G and its Whitney dual. For geometries a similar decomposition gives the same information as the chromatic polynomial throwing new light on the critical problem. A basis is found for all linear identities involving Tutte polynomial coefficients. In certain cases including Hartmanis partitions one can recover all the Whitney numbers of the associated geometric lattice L(G) from t(G) and conversely. Examples and counterexamples show that duals, minors, connected pregeometries, series-parallel networks, free geometries (on which many invariants achieve their upper bounds), and lower distributive pregeometries are all characterized by their polynomials. However, inequivalence, Whitney numbers, and representability are not always invariant. Applying the decomposition to chain groups we generalize the classical two-colortheorem for graphs to show when a geometry can be imbedded in binary affine space. The decomposition proves useful also for graphical pregeometries and for unimodular (orientable) pregeometries in the counting of cycles and coboundaries.

Page Thumbnails

  • Thumbnail: Page 
235
    235
  • Thumbnail: Page 
236
    236
  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277
  • Thumbnail: Page 
278
    278
  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282