Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Rational Fibrations, Minimal Models, and Fibrings of Homogeneous Spaces

Stephen Halperin
Transactions of the American Mathematical Society
Vol. 244 (Oct., 1978), pp. 199-224
DOI: 10.2307/1997895
Stable URL: http://www.jstor.org/stable/1997895
Page Count: 26
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Rational Fibrations, Minimal Models, and Fibrings of Homogeneous Spaces
Preview not available

Abstract

Sullivan's theory of minimal models is used to study a class of maps called rational fibrations, which contains most Serre fibrations. It is shown that if the total space has finite rank and the fibre has finite dimensional cohomology, then both fibre and base have finite rank. This is applied to prove that certain homogeneous spaces cannot be the total space of locally trivial bundles. In addition two main theorems are proved which exhibit a close relation between the connecting homomorphism of the long exact homotopy sequence, and certain properties of the cohomology of fibre and base.

Page Thumbnails

  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224