If you need an accessible version of this item please contact JSTOR User Support

Median Algebra

John R. Isbell
Transactions of the American Mathematical Society
Vol. 260, No. 2 (Aug., 1980), pp. 319-362
DOI: 10.2307/1998007
Stable URL: http://www.jstor.org/stable/1998007
Page Count: 44
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Median Algebra
Preview not available

Abstract

A study of algebras with a ternary operation $(x, y, z)$ satisfying some identities, equivalent to embeddability in a lattice with $(x, y, z)$ realized as, simultaneously, $(x \wedge (y \vee z)) \vee (y \wedge z)$ and $(x \vee (y \wedge z)) \wedge (y \vee z)$. This is weaker than embeddability in a modular lattice, where those expressions coincide for all $x, y$, and $z$, but much of the theory survives the extension. For actual embedding in a modular lattice, some necessary conditions are found, and the investigation is carried much further in a special, geometrically described class of examples ("2-cells"). In distributive lattices $(x, y, z)$ reduces to the median $(x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$, previously studied by G. Birkhoff and S. Kiss It is shown that Birkhoff and Kiss found a basis for the laws; indeed, their algebras are embeddable in distributive lattices, i.e. in powers of the 2-element lattice. Their theory is much further developed and is connected into an explicit Pontrjagin-type duality.

Page Thumbnails

  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322
  • Thumbnail: Page 
323
    323
  • Thumbnail: Page 
324
    324
  • Thumbnail: Page 
325
    325
  • Thumbnail: Page 
326
    326
  • Thumbnail: Page 
327
    327
  • Thumbnail: Page 
328
    328
  • Thumbnail: Page 
329
    329
  • Thumbnail: Page 
330
    330
  • Thumbnail: Page 
331
    331
  • Thumbnail: Page 
332
    332
  • Thumbnail: Page 
333
    333
  • Thumbnail: Page 
334
    334
  • Thumbnail: Page 
335
    335
  • Thumbnail: Page 
336
    336
  • Thumbnail: Page 
337
    337
  • Thumbnail: Page 
338
    338
  • Thumbnail: Page 
339
    339
  • Thumbnail: Page 
340
    340
  • Thumbnail: Page 
341
    341
  • Thumbnail: Page 
342
    342
  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362