Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Injectivity, Projectivity, and the Axiom of Choice

Andreas Blass
Transactions of the American Mathematical Society
Vol. 255 (Nov., 1979), pp. 31-59
DOI: 10.2307/1998165
Stable URL: http://www.jstor.org/stable/1998165
Page Count: 29
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Injectivity, Projectivity, and the Axiom of Choice
Preview not available

Abstract

We study the connection between the axiom of choice and the principles of existence of enough projective and injective abelian groups. We also introduce a weak choice principle that says, roughly, that the axiom of choice is violated in only a set of different ways. This principle holds in all ordinary Fraenkel-Mostowski-Specker and Cohen models where choice fails, and it implies, among other things, that there are enough injective abelian groups. However, we construct an inner model of an Easton extension with no nontrivial injective abelian groups. In the presence of our weak choice principle, the existence of enough projective sets is as strong as the full axiom of choice, and the existence of enough free projective abelian groups is nearly as strong. We also prove that the axiom of choice is equivalent to "all free abelian groups are projective" and to "all divisible abelian groups are injective."

Page Thumbnails

  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55
  • Thumbnail: Page 
56
    56
  • Thumbnail: Page 
57
    57
  • Thumbnail: Page 
58
    58
  • Thumbnail: Page 
59
    59