Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Projective Description of Weighted Inductive Limits

Klaus D. Bierstedt, Reinhold Meise and William H. Summers
Transactions of the American Mathematical Society
Vol. 272, No. 1 (Jul., 1982), pp. 107-160
DOI: 10.2307/1998953
Stable URL: http://www.jstor.org/stable/1998953
Page Count: 54
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Projective Description of Weighted Inductive Limits
Preview not available

Abstract

Considering countable locally convex inductive limits of weighted spaces of continuous functions, if $\mathscr{V} = \{V_n\}_n$ is a decreasing sequence of systems of weights on a locally compact Hausdorff space $X$, we prove that the topological of $\mathscr{V}_0C(X) = \operatorname{ind}_{n \rightarrow} C(V_n)_0(X)$ can always be described by an associated system $\bar V = \bar V_ \mathscr{V}$ of weights on $X$; the continuous seminorms on $\mathscr{V}_0C(X)$ are characterized as weighted supremum norms. If $\mathscr{V} = \{\upsilon_n\}_n$ is a sequence of continuous weights on $X$, a condition is derived in terms of $\mathscr{V}$ which is both necessary and ufficient for the completeness (respectively, regularity) of the $(LB)$-space $\mathscr{V}_0C(X)$, and which is also equivalent to $\mathscr{V}_0C(X)$ agreeing algebraically and topologically with the associated weighted space $C \bar V_0(X)$; for sequence spaces, this condition is the same as requiring that the corresponding echelon space be quasi-normable. A number of consequences follow. As our main application, in the case of weighted inductive limits of holomorphic functions, we obtain, using purely functional analytic methods, a considerable extension of a theorem due to B. A. Taylor [37] which is useful in connection with analytically uniform spaces and convolution equations. The projective description of weighted inductive limits also serves to improve upon existing tensor and slice product representations. Most of our work is in the context of spaces of scalar or Banach space valued functions, but, additionally, some results for spaces of functions with range in certain $(LB)$-spaces are mentioned.

Page Thumbnails

  • Thumbnail: Page 
107
    107
  • Thumbnail: Page 
108
    108
  • Thumbnail: Page 
109
    109
  • Thumbnail: Page 
110
    110
  • Thumbnail: Page 
111
    111
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116
  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129
  • Thumbnail: Page 
130
    130
  • Thumbnail: Page 
131
    131
  • Thumbnail: Page 
132
    132
  • Thumbnail: Page 
133
    133
  • Thumbnail: Page 
134
    134
  • Thumbnail: Page 
135
    135
  • Thumbnail: Page 
136
    136
  • Thumbnail: Page 
137
    137
  • Thumbnail: Page 
138
    138
  • Thumbnail: Page 
139
    139
  • Thumbnail: Page 
140
    140
  • Thumbnail: Page 
141
    141
  • Thumbnail: Page 
142
    142
  • Thumbnail: Page 
143
    143
  • Thumbnail: Page 
144
    144
  • Thumbnail: Page 
145
    145
  • Thumbnail: Page 
146
    146
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155
  • Thumbnail: Page 
156
    156
  • Thumbnail: Page 
157
    157
  • Thumbnail: Page 
158
    158
  • Thumbnail: Page 
159
    159
  • Thumbnail: Page 
160
    160