Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

When is the Natural Map $X \rightarrow \Omega\SigmaX$ a Cofibration?

L. Gaunce Lewis, Jr.
Transactions of the American Mathematical Society
Vol. 273, No. 1 (Sep., 1982), pp. 147-155
DOI: 10.2307/1999197
Stable URL: http://www.jstor.org/stable/1999197
Page Count: 9
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
When is the Natural Map $X \rightarrow \Omega\SigmaX$ a Cofibration?
Preview not available

Abstract

It is shown that a map $f: X \rightarrow F(A, W)$ is a cofibration if its adjoint $f: X \bigwedge A \rightarrow W$ is a cofibration and $X$ and $A$ are locally equiconnected (LEC) based spaces with $A$ compact and nontrivial. Thus, the suspension map $\eta: X \rightarrow \Omega\SigmaX$ is a cofibration if $X$ is LEC. Also included is a new, simpler proof that C. W. complexes are LEC. Equivariant generalizations of these results are described.

Page Thumbnails

  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151
  • Thumbnail: Page 
152
    152
  • Thumbnail: Page 
153
    153
  • Thumbnail: Page 
154
    154
  • Thumbnail: Page 
155
    155