Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Definable Sets in Ordered Structures. II

Julia F. Knight, Anand Pillay and Charles Steinhorn
Transactions of the American Mathematical Society
Vol. 295, No. 2 (Jun., 1986), pp. 593-605
DOI: 10.2307/2000053
Stable URL: http://www.jstor.org/stable/2000053
Page Count: 13
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Definable Sets in Ordered Structures. II
Preview not available

Abstract

It is proved that any 0-minimal structure M (in which the underlying order is dense) is strongly 0-minimal (namely, every N elementarily equivalent to M is 0-minimal). It is simultaneously proved that if M is 0-minimal, then every definable set of n-tuples of M has finitely many "definably connected components."

Page Thumbnails

  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605