Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Classification of Semisimple Algebraic Monoids

Lex E. Renner
Transactions of the American Mathematical Society
Vol. 292, No. 1 (Nov., 1985), pp. 193-223
DOI: 10.2307/2000177
Stable URL: http://www.jstor.org/stable/2000177
Page Count: 31
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Classification of Semisimple Algebraic Monoids
Preview not available

Abstract

Let X be a semisimple algebraic monoid with unit group G. Associated with E is its polyhedral root system (X, Φ, C), where X = X(T) is the character group of the maximal torus $T \subseteq G, \Phi \subseteq X(T)$ is the set of roots, and $C = X(\bar T)$ is the character monoid of $\bar T \subseteq E$ (Zariski closure). The correspondence E → (X, Φ, C) is a complete and discriminating invariant of the semisimple monoid E, extending the well-known classification of semisimple groups. In establishing this result, monoids with preassigned root data are first constructed from linear representations of G. That done, we then show that any other semisimple monoid must be isomorphic to one of those constructed. To do this we devise an extension principle based on a monoid analogue of the big cell construction of algebraic group theory. This, ultimately, yields the desired conclusions.

Page Thumbnails

  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213
  • Thumbnail: Page 
214
    214
  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223