Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Asymptotic Behavior Near the Crest of Waves of Extreme Form

J. B. McLeod
Transactions of the American Mathematical Society
Vol. 299, No. 1 (Jan., 1987), pp. 299-302
DOI: 10.2307/2000495
Stable URL: http://www.jstor.org/stable/2000495
Page Count: 4
  • Read Online (Free)
  • Download ($30.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Asymptotic Behavior Near the Crest of Waves of Extreme Form
Preview not available

Abstract

The angle which the free boundary of an extreme wave makes with the horizontal is the solution of a singular, nonlinear integral equation. It has been proved only recently that solutions exist and that (as Stokes suggested in 1880) these solutions represent waves with sharp crests of included angle 2/3π. Amick and Fraenkel have investigated the asymptotic behavior of the free surface near the crest and obtained an asymptotic expansion for this behavior, but are unable to say whether the leading term in this expansion has a nonzero coefficient (and so whether it is in fact the leading term or not). The present paper shows that the coefficient is nonzero and determines its sign.

Page Thumbnails

  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302