If you need an accessible version of this item please contact JSTOR User Support

Special Functions of Matrix Argument. I: Algebraic Induction, Zonal Polynomials, and Hypergeometric Functions

Kenneth I. Gross and Donald St. P. Richards
Transactions of the American Mathematical Society
Vol. 301, No. 2 (Jun., 1987), pp. 781-811
DOI: 10.2307/2000670
Stable URL: http://www.jstor.org/stable/2000670
Page Count: 31
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Special Functions of Matrix Argument. I: Algebraic Induction, Zonal Polynomials, and Hypergeometric Functions
Preview not available

Abstract

Hypergeometric functions of matrix argument arise in a diverse range of applications in harmonic analysis, multivariate statistics, quantum physics, molecular chemistry, and number theory. This paper presents a general theory of such functions for real division algebras. These functions, which generalize the classical hypergeometric functions, are defined by infinite series on the space $S = S(n,F)$ of all $n \times n$ Hermitian matrices over the division algebra $F$. The theory depends intrinsically upon the representation theory of the general linear group $G = GL(n,F)$ of invertible $n \times n$ matrices over $F$, and the theme of this work is the full exploitation of the inherent group theory. The main technique is the use of the method of "algebraic induction" to realize explicitly the appropriate representations of $G$, to decompose the space of polynomial functions on $S$, and to describe the "zonal polynomials" from which the hypergeometric functions are constructed. Detailed descriptions of the convergence properties of the series expansions are given, and integral representations are provided. Future papers in this series will develop the fine structure of these functions.

Page Thumbnails

  • Thumbnail: Page 
781
    781
  • Thumbnail: Page 
782
    782
  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800
  • Thumbnail: Page 
801
    801
  • Thumbnail: Page 
802
    802
  • Thumbnail: Page 
803
    803
  • Thumbnail: Page 
804
    804
  • Thumbnail: Page 
805
    805
  • Thumbnail: Page 
806
    806
  • Thumbnail: Page 
807
    807
  • Thumbnail: Page 
808
    808
  • Thumbnail: Page 
809
    809
  • Thumbnail: Page 
810
    810
  • Thumbnail: Page 
811
    811